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Abstract

Tropical agro-forest landscapes are global priority areas for biodiversity conservation. Little is known about the ability of
these landscapes to sustain large late successional forest trees upon which much forest biodiversity depends. These
landscapes are subject to fragmentation and additional habitat degradation which may limit tree recruitment and thus
compromise numerous ecosystem services including carbon storage and timber production. Dysoxylum malabaricum is a
large canopy tree species in the Meliaceae, a family including many important tropical timber trees. This species is found in
highly fragmented forest patches within a complex agro-forest landscape of the Western Ghats biodiversity hot spot, South
India. In this paper we combined a molecular assessment of inbreeding with ecological and demographic data to explore
the multiple threats to recruitment of this tree species. An evaluation of inbreeding, using eleven microsatellite loci in 297
nursery-reared seedlings collected form low and high density forest patches embedded in an agro-forest matrix, shows that
mating between related individuals in low density patches leads to reduced seedling performance. By quantifying habitat
degradation and tree recruitment within these forest patches we show that increasing canopy openness and the increased
abundance of pioneer tree species lead to a general decline in the suitability of forest patches for the recruitment of D.
malabaricum. We conclude that elevated inbreeding due to reduced adult tree density coupled with increased degradation
of forest patches, limit the recruitment of this rare late successional tree species. Management strategies which maintain
canopy cover and enhance local densities of adult trees in agro-forest mosaics will be required to ensure D. malabaricum
persists in these landscapes. Our study highlights the need for a holistic understanding of the incipient processes that
threaten populations of many important and rare tropical tree species in human dominated agro-forest landscapes.
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Introduction

Tropical forests are globally important centers of biological

diversity and provide crucial ecosystem services including impor-

tant terrestrial carbon stores [1]. The vast majority of tropical

forest does not reside within protected areas [2] but rather as

fragmented patches of forest within a more complex landscape

mosaic. These forests are typically logged, degraded, highly patchy

[3] and subject to a wide array of additional anthropogenic

pressures such as grazing, hunting and invasive exotic species [4].

The persistence of late successional tree species within such human

dominated tropical landscapes is important for maintaining

tropical forest biodiversity. How well late successional tropical

forest tree species are able to persist within these landscapes

depends upon their resilience to these multiple and potentially

synergistic genetic and ecological stressors [5,6]. Few empirical

studies have endeavored to evaluate these intrinsic genetic and

extrinsic ecological stressors in unison despite these rapidly

increasing pressures.

Studies investigating genetic consequences of fragmentation in

woody species reveal that fragmentation can lead to elevated

inbreeding [7,8] and reduced fitness of the progeny [9,10] through

inbreeding depression. One possible underlying process is that

pollinators predominantly forage among near neighbors, which

may increase bi-parental inbreeding due to increased mating

among few related individuals [11]. Habitat fragmentation has a

number of ecological consequences for the reproductive ecology of

plant species, for example by reducing pollinator visitation which

directly reduces fruit and seed set [12]. Fragmentation can also

have significant impacts on the community of seed dispersers

influencing dispersal [13] and even on the selection pressures upon

seed size [14]. When forests become fragmented, reproduction of

many tree species can be altered due to unfavorable environmen-

tal conditions for seedling establishment. For example, tree

seedling survival can be reduced due to drier conditions [15],

increased litter fall, which smothers seedlings [16], and alien

species invasion [17] especially at the forest edges. Recruitment of
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late successional shade tolerant trees is thought to be especially

sensitive to fragmentation effects because of competition with

faster growing light-demanding species that perform better under

more open canopies [18]. Forest fragmentation may thus cause

shifts in species compositions where slow growing late successional

tree species are replaced by early successional pioneer species

[19,20].

Although genetic and non-genetic consequences of fragmenta-

tion have been shown to affect tree species reproductive ecology,

these stressors are rarely considered in unison within a single study.

Our objective was to empirically investigate if genetic and

ecological processes affected recruitment of a late successional

tree species within a fragmented landscape mosaic. We combined

a molecular assessment of inbreeding in progeny of the canopy

tree species Dysoxylum malabaricum with ecological and demograph-

ic data to address the question: can a late successional tropical tree

species persist in a complex agro-forest landscape within the

Western Ghats biodiversity hot spot, South India?

In a previous study we demonstrated that pollen dispersal of D.

malabaricum in this fragmented landscape can be extensive.

However, in the highly fragmented patches - when densities of

adult trees were low (5 or fewer conspecific trees within 500 m) -

the frequency of short distance pollen dispersal and consequently

mating among related individuals was greater than in patches

which were less fragmented (when local population densities were

high, 6 or more conspecific trees within 500 m) [21]. The

implications of this elevated inbreeding for growth and perfor-

mance of progeny have until now not been examined. To evaluate

the genetic and ecological factors which undermine the ability of

D. malabaricum to persist in this landscape we present two data sets.

The genetic data consists of a nursery trial of progeny collected

from low and high density D. malabaricum forest patches. We used

multilocus genotypes of these seedlings together with adult tree

genotypes to determine the level of inbreeding and its implications

for seedling vigour. The ecological data consists of detailed

demographic data on the adult trees and densities of seedlings

coupled with seven indicators of degradation in 17 forest patches,

to investigate whether degradation correlated with seedling

density. We used these data sets to test the following hypotheses:

A) Mating between related individuals due to fragmentation

reduces seedling performance in D. malabaricum. B) Ecological

degradation leads to reduced D. malabaricum seedling densities in

forest patches. By combining the two approaches above we hoped

to gain a more holistic view of the factors influencing the

demographic structure of D. malabaricum in this landscape. D.

malabaricum is representative of numerous other threatened canopy

tree species of late successional forest whose habitat is increasingly

limited to forest patches within complex landscape mosaics. This

study thus advances our understanding of how the genetic and

ecological consequences of habitat fragmentation and degradation

in unison undermine canopy tree persistence in human modified

landscape mosaics.

Methods

Ethics statement
The forest patches we worked in are conserved due to cultural

beliefs, owned by the Forest Department of Karnataka and

managed by local temple committees, which granted access for

sample collection. This was the only formal access permission

required to conduct our research.

The study species D. malabaricum is not assessed under the IUCN

Red List and is not listed as a protected species, but is classified as

endangered under the Indian national threat assessment [22].

Study area
This study focusses on an agro-forest landscape encompassing

216 km2 including coffee, rice and forests patches (Figure 1). Our

study site is situated in Kodagu district, within the Western Ghats

biodiversity hotspot, South India. This district is a major coffee-

growing region where coffee is grown predominantly under native

shade trees [23]. Kodagu is renowned for the high density of small

native forest patches conserved for cultural use [23]. These forest

patches are set within an agricultural matrix consisting mainly of

native shade coffee plantations and paddy fields [24]. Although

these forest patches contribute only marginally to the overall forest

area of the region [25], they are recognized as important

repositories of biodiversity [26]. The forest patches within our

study area are subject to anthropogenic disturbances through

intensified resource extraction by the local community, such as fuel

wood, small poles and non-timber forest products [27]. Illegal

timber extraction and the encroachment of forest patches by coffee

plantations are also common [28]. Within the landscape of the

study area we have located and mapped all adult D. malabaricum

trees [21].

Study species
Dysoxylum malabaricum is a highly prized timber species within the

tropical tree family Meliaceae. The species produces hermaphro-

dite flowers with a nectar reward suggesting insect pollination, but

the main pollinators are unknown. Within the study area D.

malabaricum maintains high genetic connectivity with around 9% of

the pollen dispersal beyond 5 km distance [21]. The ripe fruit split

along the four septa displaying the shiny brown seed (c.

30620 mm) consumed by large-gape birds [29]. Our own field

observations support the idea that the Malabar Grey Hornbill

Ocyceros griseus is an important dispersal agent. The birds ingest the

entire seed and remove the brown lipid rich seed coat before

regurgitation. If the seed fall passively to the forest floor they rot

quickly suggesting obligate zoochory (Ismail pers. obs. 2010). The

Malabar Grey Hornbill is known to be relatively robust to habitat

disturbances and is known to cross over open habitat [30]

indicating the potential to disperse seed over long distances. The

potential for long distance gene dispersal by pollen and seed is

expected to buffer tree species against negative effects of

fragmentation [31]. D. malabaricum has been extensively logged

[32], and demand for D. malabaricum timber remains high with

round wood logs fetching up to US$ 620 per cubic metre at local

timber auctions in Kodagu (Ismail pers. obs. 2008).

Within our study area D. malabaricum is predominantly found in

forest patches: of the 235 adult trees recorded, we found 223 trees

in 35 forest patches. The remaining twelve trees were found in

coffee plantations (of which nine were within 300 meters of a forest

patch). Our previous study on pollen dispersal suggests that our

sample of adult trees is exhaustive [21]. We have mapped,

genotyped and recorded the diameter at breast height (DBH) of all

adult D. malabaricum trees in our study area.

Evaluation of seedling performance and inbreeding
Nursery trials. 617 seeds were collected near to 37 fruiting

trees (97% of seed were found within 10 m of a fruiting tree) across

16 of the 35 forest patches within our study area (see Figure 1 and

Table S1 in Supporting Information for details). Each seed was

planted in a 1 liter polyethylene bag into a mixture of 1 part red

soil, 2 parts cow dung and 2 parts river sand during July and

August 2008, within 1 day after collection. A total of 363 seeds

(61%) germinated. Of those that failed to germinate, at least 119

seeds (20%) were predated by larvae of a tephritid fly (Dacus sp.).

Because of this initial exogenous loss we did not continue
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assessment of germination rates as a performance variable

attributable to genetic factors. We grew the subsequent seedlings

(n = 363) in a shade house (50% shade cloth) and watered daily.

We rotated the seedlings monthly within the shade house to

prevent any local effects, such as daylight orientation and neighbor

competition. To reduce mortality due to pests we also applied

insecticide and fungicide uniformly across the plants. Plants were

repotted after 1 year into 5 liter polyethylene bags. Growth of

seedlings in this controlled nursery experiment was monitored over

21 months by monthly measurements of total stem length from soil

to top of the apical meristem, to an accuracy of 0.5 cm. After the

21 month period leaf material was sampled from each seedling for

subsequent genotyping (see Appendix S1 in Supporting Informa-

tion for details on genotyping and genetic analysis).

Evaluation of seedling inbreeding. To investigate if

inbreeding and mating between related individuals reduced

growth of the seedlings, we first applied a parentage analysis with

the delta maximum-likelihood approach implemented in CER-

VUS [33] to determine the two most likely parents at the 90%

confidence level (see Appendix S1 for details of the parameter

settings). Candidate parents were all adult trees in our study area,

genotypes of which had already been published in our earlier study

[21]. The microsatellite data of the adult samples and the nursery

seedlings were deposited in the DRYAD Digital Repository

(doi:10.5061/dryad.3ck30 and doi:10.5061/dryad.mq8fn respec-

tively).

The kinship coefficients [34] among the two assigned parent

pairs provide one measure of inbreeding. In addition, individual

inbreeding coefficients [35] were calculated for each seedling using

the program SPAGEDI 1.3a [36] based on the seedling genotypes

alone. The individual inbreeding coefficient r̂ is calculated as:

r̂r~
X

i,l

Sil{P2
il

Pil

,X
l

nl{1ð Þ

where Pil is the estimated frequency of the ith allele at the lth locus,

S is an indicator variable which is one if the individual is

homozygous for the ith allele at the lth locus and zero otherwise,

and nl is the number of alleles at the lth locus.

Characterizing local density of D. malabaricum adults
in forest patches where seed was collected. The 16 forest

patches where we collected seed to investigate inbreeding effects

were characterized as either low density (LD) or high density (HD)

patches of D. malabaricum based upon the number of conspecifics

within 500 m of any given adult tree within a patch following

Ismail et al. [21]. This threshold of 500 m ensures that all

conspecifics within the same forest patch are included and

accounts for the rare cases where high local densities are the

result of conspecific trees located in adjacent coffee plantations or

in neighbouring forest patches [21]. This parameter reflects the

local abundance of adult individuals of D. malabaricum and the

distance to the neighboring forest patches and abundance of adult

individuals within those neighboring patches. Only five of the 16

forest patches had another forest patch within 500 m and the

distance between any two trees within a patch never exceeded

450 m. Our previous work using a detailed genetic analysis of

pollen dispersal distances demonstrated increased genetic isolation

and increased bi-parental inbreeding when local densities were

Figure 1. Location of the study area within India (light grey) and Karnataka (dark grey). Image (A): Study area marked with a white
minimum convex polygon (216 km2) around the numbered forest patches where adult trees were found. The color labels of the numbers indicate if
only Dysoxylum malabaricum seed for the nursery trial were collected (light blue), if only survey plots were established (dark blue) or if both records
were taken (red). Image (B): Zoom of the yellow rectangle on image (A) with coffee plantations marked dark green and open areas (mainly paddy)
marked light green. Investigated forest patches are the bright green polygons with a blue border and dots displaying adult D. malabaricum trees.
doi:10.1371/journal.pone.0089437.g001
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below six conspecific trees within 500 meters [21] providing the

justification for this categorization of genetic fragmentation.

Statistical analysis of inbreeding and growth perfor-
mance under nursery conditions. Because the effect of local

tree density in a forest patch has already been demonstrated to

influence patterns of inbreeding in D. malabaricum [21], we

classified the nursery seedlings based upon whether they were

collected from low density (LD) or high density (HD) D.

malabaricum forest patches. We tested for significant differences of

median seedling height, median individual inbreeding coefficient

and median kinship coefficient between seedlings of LD and HD

origin with non-parametric Wilcoxon rank sum test implemented

in R 2.13.1 [37]. To test for significant correlation of seedling

height with individual inbreeding coefficients as well as with the

kinship of parent pairs Pearson’s product-moment correlation

(PPMC) test was computed in R [37]. Linear regression was not

performed on this data due to variance inhomogeneity.

Evaluation of recruitment and habitat degradation
Sample plots. To quantify habitat degradation and recruit-

ment (indicated by seedling, sapling and pole stage tree densities)

of D. malabaricum under natural conditions, we established five

random plots in each of 17 selected forest patches (85 random

plots) in 2010 (12 patches are common among both seed collection

for inbreeding assessments and survey plots). For each patch we

selected plots randomly in north orientated maps with an overlaid

grid. Each grid cell was assigned a number, line by line from the

top left to bottom right. We then used a random number generator

in the program Excel (Microsoft) to select five random plots for

each patch. The lower left-hand corner of the plot was defined by

these coordinates. In case of overlap with other plots or when

more than 10% of the plot was outside the forest patch the plot

was turned 90u clockwise until the entire plot lay within the patch.

Plots were 14 m614 m except in the smallest forest patch where

we had to reduce plot size to 10 m610 m. We standardized all

plot based measures to 100 m2. We quantified recruitment of D.

malabaricum by recording the number of seedlings (, 50 cm

height), number of saplings (. 50 cm, ,150 cm) and poles

(. 150 cm and DBH ,5 cm) within each plot.

Ecological parameters to quantify habitat degrada-
tion. We recorded seven parameters which reflect the forest

structure and species composition as indicators for habitat

degradation. Within each plot this included three variables

indicative of low habitat quality: 1) Canopy openness measured

with a densiometer (model A) [38] (by averaging four measure-

ments in the centre of the 7 m by 7 m quarters of each plot. In

each quarter we measured in all four cardinal directions). 2) The

number of coffee seedlings (, 150 cm height), because coffee

Coffea canephora (a common and important exotic crop species) is

naturalizing within forest patches of our study area (Ismail pers. obs.

2009). 3) Juvenile (. 0.25 m; ,2 m) abundance of the pioneer

tree species Clerodendrum viscosum, a light demanding species which

dominates degraded forest. Four variables were selected as

indicators of good habitat quality: 4) the number of adult D.

malabaricum trees within a patch; 5) the total area of each forest

patch (by mapping the forest patch with a handheld GPS (60CSx,

Garmin, USA) to an accuracy of five meters). 6) The proportion of

the forest patch border by shade coffee plantations. We chose this

variable as shade coffee plantations of the region are predomi-

nately grown under dense native shade providing a more ‘forest

like’ matrix than other land uses in the study area. This might

buffer edge effects more effectively. 7) In addition we quantified

the number of arboreal termite nests attached to branches and

trees within each plot. Termites have been shown to be effective

indicators of forest disturbances in other regions, because they are

sensitive to forest disturbance, especially to canopy loss [39–41].

Using all these variables as indicators of habitat quality and D.

malabaricum seedling density as an indicator of recruitment we

tested the hypothesis that recruitment is reduced in degraded

forest patches.

Statistical analysis of recruitment and ecological
degradation. All statistical analysis was performed with R

2.13.1 [37]. To account for the nestedness of the study design we

averaged the measurements of the five plots per forest patch before

analysis. This resulted in 17 observations (for an overview of this

data see Table S2). This approach was chosen as an alternative to

a generalized linear mixed model based on the observations from

all 85 plots, because non-normality and inhomogeneity of the

residuals negated the use of these models. To investigate

reproductive success of D. malabaricum in the wild, we performed

multiple linear regression (MLR) models with seedling densities as

the response variable and the seven variables on habitat

degradation described above as explanatory variables. Model

assumptions were checked for normality and homogeneity by

visual inspections of plots of residuals against fitted values. To meet

model assumptions seedling densities were square root trans-

formed prior to analysis. On this initial model we applied model

selection with the forward as well as the backward step function

implemented in R to exclude irrelevant variables and to improve

the model. Pearson’s product-moment correlation (PPMC) test

was applied to check for co-linearity among pairs of explanatory

variables.

Results

Effects of inbreeding and seedling performance
Of the 363 seeds which germinated 297 seedlings survived for

21 months. Using a parentage analysis we were able to assign 99%

of seedlings at the 90 % confidence level to the two most likely

parents (293 individuals). For subsequent analysis of growth

performance 14 seedlings were excluded because the height

measurements were ambiguous. This resulted in the exclusion of

one of the forest patches from subsequent analysis of inbreeding.

The classification of the remaining 273 seedlings into HD forest

and LD forest provenance resulted in 197 seedlings from eight HD

forest patches and 76 seedlings from seven LD forest patches.

Comparing the assigned seedlings originating from HD forest

patches vs LD forest patches, the median ranks of the seedling

height after 21 months were significantly higher (Median

HD = 38.0 cm, Median LD = 25.5 cm, p-value = 0.00003),

individual inbreeding coefficients and kinships of parent pairs were

significantly lower (p-value = 0.001 and p-value = 0.0001

respectively) in seedlings from HD forest patches (Figure 2).

Individual inbreeding coefficient was significantly negatively

correlated with seedling height (PPMC coefficient = –0.139,

t = –2.36, df = 281, p-value = 0.02) (the scatterplot of this data is

given in Figure S1). In contrast, we observed no significant

correlation between kinship of parent pairs and height of the

seedlings (t = –1.32, df = 271, p-value = 0.19) (the scatterplot of

this data is given in Figure S1).

State of recruitment in D. malabaricum
Plotting size class frequency distributions of all recorded

reproductive (. 5 cm DBH) D. malabaricum trees across the entire

216 km2 area showed an inverted ‘U’ shape distribution (Figure 3).

There was a noticeable absence of the smallest size classes

(, 20 cm DBH) with only one tree with a DBH of 8.5 cm and no
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trees in the 10 – 20 cm DBH class. There was a constant decline in

the frequency of individuals from 60 cm DBH downward.

Although seedlings were present in all forest patches and

saplings were present in nearly all surveyed forest patches, pole

stage trees (. 1.5 m height and ,5 cm DBH) were extremely

rare. We detected only 11 poles in total in six of 17 surveyed forest

patches. Seedling and sapling densities (averaged per site) varied

greatly and ranged from 0.1 to 17.6 seedlings per 100 m2 and

Figure 2. Effect of high density (HD) and low density (LD) of adult Dysoxylum malabaricum trees on A) seedling height after 21
months of growth (Median HD = 38.0 cm, Median LD = 25.5 cm), B) individual inbreeding coefficient (Median HD = 0.034, Median
LD = 0.122), and C) pairwise parental kinship coefficients [32] (Median HD = 0.042, Median LD = 0.132), of nursery-reared D.
malabaricum seedlings. Boxplots show the median and the upper and the lower quartile, the whiskers are 1.5 times the interquartile range from
the box, dots outside of the whiskers are considered outliers. Significant differences are based on Wilcoxon rank sum test; * p,0.05, ** p,0.01, ***
p,0.001.
doi:10.1371/journal.pone.0089437.g002

Figure 3. Histogram of diameter at breast height (DBH) of all the 235 enumerated adult Dysoxylum malabaricum trees within the
216 km2 study area.
doi:10.1371/journal.pone.0089437.g003
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from 0 to 1.7 saplings per 100 m2. We only found pole stage trees

at very low densities from 0 to 0.4 individuals per 100 m2.

Effects of habitat degradation on recruitment of D.
malabaricum

We used seven indicators of habitat degradation as explanatory

variables of our MLR model to investigate their effect on seedling

densities. In the model selection the number of adult D.

malabaricum trees, the area of the forest patch and the density of

coffee seedlings, did not improve the regression model and were

excluded from the subsequent model. Within the final reduced

model (Table 1) the percentage of closed canopy (t = 3.67,

p = 0.0032) and the density of termite nests (t = 7.21,

p = 0.00001) were positively associated with seedling density.

The density of C. viscosum juveniles (t = –5.05, p = 0.0003) was

negatively associated with seedling density. The proportion of the

forest patch bordered by coffee plantations improved the model

but was not significantly positively correlated with seedling density

(t = 1.54, p = 0.149). PPMC among the pairs of explanatory

variables was non-significant. The adjusted r squared of the final

model was 0.81. Restricting the MLR only to the three significant

variables resulted in an adjusted r squared of 0.79.

Discussion

The ability of late successional tropical tree species to persist in

complex agro-forest landscapes will have significant implications

for biodiversity and ecosystem services. Here we provide an

example of one rare but important tropical tree Dysoxylum

malabaricum. The nursery trial of genotyped seedlings indicates

that fragmentation can cause reduced seedling vigour through

inbreeding effects. Further, we demonstrate that habitat degrada-

tion reduces seedling densities, which appears to be associated with

increased canopy disturbance. Thus fragmentation and degrada-

tion both appear to compromise the ability of this late successional

tree to reproduce and persist in human modified landscapes.

Below we examine the evidence for both genetic and ecological

stressors influencing the recruitment of D. malabaricum. We discuss

the implications of these findings for understanding of the long

term persistence of late successional forest trees in tropical agro-

forest landscapes.

Importance of genetic factors for D. malabaricum
recruitment

The present study, using nursery-grown seedlings and the

kinship coefficients of their most likely parent pairs, confirms that

increased inbreeding due to fragmentation reduces seedling

growth. We interpret the reduced seedling average growth rates

as a sign of inbreeding depression. Inbreeding depression has been

shown to be a key factor reducing plant population viability [42]

and is a plausible constraint to recruitment of D. malabaricum.

Although alternative mechanisms for reduced performance exist,

such as low pollen diversity [11] or maternal origin [9], the

implications for reproduction success remain the same.

Impact of habitat degradation on D. malabaricum
recruitment

Our evaluation of habitat suitability suggests that degradation of

forest patches as indicated by increased openness of the forest

canopy is resulting in sites less favorable for D. malabaricum

recruitment. This idea is supported by the negative association of

D. malabaricum seedlings with the density of C. viscosum seedlings

and the percentage of open canopy as well as the positive

association with the density of arboreal termite nests, independent

of adult tree abundance.

Clerodendrum viscosum is an early successional light demanding

species establishing after gap formation [44]. We refrain from

concluding a causal link between increased abundance of C.

vicosum and lower D. malabaricum seedling densities. However, these

associations are consistent with the idea that D. malabaricum

seedlings in forest patches with more open canopy experienced

increased competition from light demanding species, and a less

favorable microclimate.

Interestingly, D. malabaricum seedling densities are greater where

arboreal termite nests are more abundant, which could indicate

more favorable and less degraded habitat. Termite communities

were shown to be sensitive to canopy disturbance in other studies

[39–41] which may well represent a response of termite

communities to the loss of big trees. However, the processes

underlying this correlation are likely to be more complicated,

termites are also important agents of soil formation and nutrient

cycling in tropical forests [45] and therefore may influence edaphic

conditions important for D. malabaricum seedling establishment.

The additional factors we recorded (density of coffee seedlings,

the number of adult D. malabaricum trees within a patch and the

total area of each forest patch) were excluded by the model

selection. However, it is noteworthy that though there was no

statistically significant relationship between the number of coffee

seedlings and D. malabaricum seedling densities, in plots where we

observed high densities of coffee seedlings (. 200 per 100 m2) we

consistently detected very low densities of D. malabaricum seedlings.

These plots had on average more than six times lower D.

malabaricum seedling densities than plots with lower coffee seedling

densities (where we recorded very low to high densities of D.

malabaricum seedlings). The potential competitive interactions

between D. malabaricum and coffee seedlings are worthy of future

empirical validation. The observed variation of seedling densities

across patches does not correspond with the density of reproduc-

tive adult trees and the area of the forest patches (no significant fits

to the MLR) suggesting that seed production and suitable area for

establishment per se are not driving the limited recruitment at the

patch level.

Evidence for recruitment limitation in D. malabaricum
Based upon estimates of seedling and sapling densities within

our 85 random plots, seed production and germination appears to

be substantial in D. malabaricum. However, evaluation of the

population structure based upon tree diameter classes indicates an

almost complete absence of the smallest size class (. 5 cm,20 cm

DBH) trees across the entire 216 km2 study area (Figure 3). Based

upon preliminary dendrological estimates in this species (see

Appendix S2 in Supporting Information for details), we infer that

Table 1. Summary of the multiple linear regression after
model selection used to fit Dysoxylum malabricum seedling
densities under natural conditions.

Estimate Std. Error t value Pr(.|t|)

(Intercept) –35.007 9.796 –3.573 0.0038 **

% of closed canopy 0.375 0.102 3.671 0.0032 **

C. viscosum juveniles –0.286 0.057 –5.053 0.0003 ***

Termite nests 3.918 0.543 7.213 0.0000 ***

% of border with coffee 0.008 0.005 1.542 0.1491

* p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0089437.t001
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trees greater than 20 cm DBH are at least 30 years old. We

interpret this as a sign of poor recruitment from the sapling to the

adult stage over the last 30 years. The survey plot data

demonstrate a clear decline in abundance of adult trees from

about 60 cm DBH to 20 cm DBH. This demographic structure is

concurrent with a decline in recruitment since the intensification

of commercial logging and plantation crops in the Western Ghats

some 80– 100 years ago [43] and a lack of recruitment since the

last extensive expansion of coffee plantations in the region during

the last 30 years [23].

Conclusions

Tropical agro-forest landscape mosaics offer great promise as

habitats to support a wide array of tropical biodiversity [46]

provided they retain key forest features such as diverse tree

communities. Our analysis provides a general view of intrinsic

genetic and extrinsic ecological factors which affect the recruit-

ment of a rare late successional tropical tree species in forest

fragments. D. malabaricum shows relatively long-distance pollen

dispersal [21]. In addition, the seed disperser (the Malabar Grey

Hornbill) moves in open habitat and can persist in fragmented

forests [30]; thus one might predict that recruitment of D.

malabaricum would be little affected by fragmentation and

degradation [31]. However, this expectation was not supported

by our study. Fragmentation and associated habitat degradation

are likely to have direct but subtle genetic and ecological

consequences for recruitment. Fragmentation can lead to elevated

inbreeding which reduces seedling vigour. Degradation of

remnant forest patches reduces the suitability for late successional

tree species leading to a double-blow to recruitment. Because low

levels of inbreeding might cause more pronounced fitness

consequences under more stressful habitat conditions [47] the

common co-occurrence of both genetic and ecological stressors

might be highly relevant for forest dynamics in fragmented

landscapes. Such multiple co-occurring ecological, genetic and

anthropogenic stressors were shown to become disproportionally

effective when local population densities become low (so called

allee effects) [48]. These represent insidious processes, which in

unison may undermine recruitment of late successional tree

species. Considering the global pattern of late successional trees

species being replaced by few pioneer tree species in tropical forest

fragments [20], our study highlights the need for future research to

recognise potentially interacting stressors which will advance our

understanding of forest dynamics in mosaic landscapes in general.

Conservation management therefore needs to address both the

genetic and ecological stressors and consider that these stressors

are likely to be amplified by low population densities.

A failure to conserve this important biodiversity within forest

patches is likely to have implications for ecosystem processes and

services. Indeed, it was shown that rare tree species contribute

disproportionately to the maintenance of ecosystem processes [49].

Therefore a more holistic understanding of the threats to tree

species in human modified landscapes, is urgently required if these

landscapes are to sustain biodiversity and ecosystem services in the

future.

Supporting Information

Figure S1 Scatterplots of Dysoxylum malabricum seed-
ling height after 21 months of growth under nursery
conditions against (A) individual inbreeding coefficient
(Pearson product moment correlation coefficient
= 20.139, t = 22.36, df = 281, p-value = 0.02) and (B)
kinship of parent pairs (Pearson product moment
correlation coefficient = 20.079, t = 21.32, df = 271,
p-value = 0.19).

(DOCX)

Appendix S1 Methods of genotyping and genetic analy-
sis.

(DOCX)

Appendix S2 Dendrological estimates.

(DOCX)

Table S1 Details of Dysoxylum malabaricum seed
sampling.

(DOCX)

Table S2 Data on degradation and reproductive success
of Dysoxylum malabaricum averaged per forest patch.

(DOCX)

Acknowledgments

We thank the hard-working field assistants Navin H. K., Monappa C.S.,

Chengappa S.K. and particularly Range G., Harsha C. and the late

Umesh who took care for the nursery experiment in the absence of S.A.I.

The painstaking single DNA extractions conducted by Sandeep S. and

Shruthi J. are esteemed a lot. The constructive comments of three

anonymous referees helped to improve the manuscript and are appreciated

a lot. Fragment analysis was conducted at the Genetic Diversity Centre
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forest fragmentation on the seedling recruitment of a tropical herb: assessing

seed vs. safe-site limitation. Ecology 91: 1317–1328.

16. Scariot A (2000) Seedling mortality by litterfall in Amazonian forest fragments.

Biotropica 32: 662–669.

17. Hobbs RJ (2001) Synergisms among habitat fragmentation, livestock grazing,

and biotic invasions in southwestern Australia. Conserv Biol 15: 1522–1528.

18. Benitez-Malvido J, Martinez-Ramos M (2003) Influence of edge exposure on

tree seedling species recruitment in tropical rain forest fragments. Biotropica 35:

530–541.

19. Laurance WF, Nascimento HEM, Laurance SG, Andrade AC, Fearnside PM, et

al. (2006) Rain forest fragmentation and the proliferation of successional trees.

Ecology 87: 469–482.

20. Tabarelli M, Peres CA, Melo FP (2012) The ‘few winners and many losers’

paradigm revisited: Emerging prospects for tropical forest biodiversity. Biol

Conserv 155: 136–140.

21. Ismail SA, Ghazoul J, Ravikanth G, Uma Shaanker R, Kushalappa CG, et al.

(2012) Does long-distance pollen dispersal preclude inbreeding in tropical trees?

Fragmentation genetics of Dysoxylum malabaricum in an agro-forest landscape. Mol

Ecol 21: 5484–5496.

22. Kumar R, Ved DK, editors (2000) 100 Red listed Medicinal Plants of

Coservation Concern in Southern India. Bangalore: Foundation for Revitali-

zation of Local Health Traditions.

23. Garcia CA, Bhagwat SA, Ghazoul J, Nath CD, Nanaya KM, et al. (2010)

Biodiversity Conservation in Agricultural Landscapes: Challenges and Oppor-

tunities of Coffee Agroforests in the Western Ghats, India. Conserv Biol 24: 479–

488.

24. Kushalappa CG, Bhagwat SA (2001) Sacred groves: biodiversity, threats and

conservation. In: Shaanker RU, Ganeshaiah KN, Bawa KS, editors. Forest

genetic resources: status, threats, and conservation strategies. New Delhi: Oxford

and IBH Publishing. pp. 21–29.

25. Bhagwat SA, Kushalappa CG, Williams PH, Brown ND (2005) Landscape

approach to biodiversity conservation of sacred groves in the Western Ghats of

India. Conserv Biol 19: 1853–1862.

26. Bhagwat SA, Kushalappa CG, Williams PH, Brown ND (2005) The role of

informal protected areas in maintaining biodiversity in the Western Ghats of

India. Ecol Soc 10.

27. Garcia CA, Pascal JP (2006) Sacred forests of Kodagy : Ecological value and
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