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Abstract

Healthy ecosystems provide indispensable services like pollination, climate regulation, and soil formation. Pollination
service provided by insects alone is valued at €153 billion. Bees are one of the major insect pollinators, making them
economically important animals, yet their populations are threatened by anthropogenic pressures. Monitoring the distribu-
tion and diversity of wild bees becomes daunting as it involves extensive field surveys, sample collection, and traditional
taxonomy. Logistic and ethical issues complicate this further. Machine learning (ML) on passively collected visual data
can provide a non-invasive, large-scale solution to these problems. However, a significant challenge for ML application is
the lack of geographically varying training data for different bee species, especially from species-rich tropical regions. In
addition, these algorithms have predominantly been tested on image data collected under controlled conditions inside labo-
ratories. ML models must be trained to perform on field-collected unrefined images of different bee species for rapid yet
non-invasive diversity estimation. In this study, to challenge and bolster the existing deep learning networks, we collected
3250 field-captured images of major South Asian social bees (4. dorsata, A. cerana, A. florea, and Tetragonula spp.). We
did not control these images for lighting and camera perspectives, which posed significant challenges to the models. We
benchmarked this image dataset using standard convolution neural network (CNN) models, finding that MobileNet-V2
was the best model, achieving the highest accuracy of 98.4%.

Clinical trial number
Clinical trial number not applicable.

Implications for insect conservation
Our study provides a framework to rapidly quantify the economically important bee diversity, which will allow efficient

conservation intervention across large spatial scales.
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is crucial in ecosystem functioning and resilience (Loreau et
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nomically important service, valued at €153 billion (Gallai
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tion. Pollinators play a critical role in maintaining healthy
genetic diversity in plants and also affect plant yield, includ-
ing crop plants (Kasina et al. 2009; van der Sluijs et al.
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2016). Bees, one of the most significant pollinators in the
animal kingdom, are essential for sustaining ecological and
economic stability (Indhu et al. 2022; Khalifa et al. 2021).
In recent years, there has been a general decline in the num-
bers and diversity of both wild and domesticated pollina-
tors worldwide (Potts et al. 2010). Ollerton (2015) indicated
that globally, there had been a considerable drop in pollina-
tor abundance and diversity in almost all geographic areas.
Basu et al. (Basu, Bhattacharya, and lannetta 2011a) sug-
gested that declining pollinator-dependent crop productivity
in India can be associated with pollination limitation, which
can significantly impact the socio-economy of an agricultur-
ally dependent country like India. Monitoring, maintaining
and studying honey bee diversity and distribution is impera-
tive to ensure food security and ecological balance (Indhu
et al. 2022). Identifying and cataloguing species diversity is
a laborious task. It requires time and trained research per-
sonnel/taxonomists, which comes with practical and logistic
constraints (Colwell 2009). Passive recording methods like
camera setups have multi-fold advantages over traditional
field surveys. Firstly, passive information collection allows
us to generate significant amounts of large-scale spatial
and temporal data with minimal effort. Secondly, it can be
deployed in areas where human intervention is undesirable,
difficult or impossible. Further, it reduces human error and
bias while performing traditional field work and taxonomy.
Such passive monitoring methods have been demonstrated
to be effective in other insects like agricultural pests and
moths. (Jain et al. 2024; Kariyanna and Sowjanya 2024;
Mendoza et al. 2023)

Advancements in ML, primarily deep learning and con-
volution neural networks (CNN) have caused a paradigm
shift in fields such as traditional taxonomy and species iden-
tification (Gharaee et al. 2023a; Hoye et al. 2021; Ruttner
1988; Sauer et al. 2024). One such important application
of ML is in bee species and sub-species identification from
visual data (C. De Nart D. 2022; M et al. 2021; Spiesman
BJ 2024; Buschbacher et al. 2020; Nawrocka et al. 2017),
where clean images under the microscope have been used
for the identification of European bees. These studies focus
on datasets curated under laboratory conditions, consisting
of wing images of European bees photographed under a
microscope in controlled lighting scenarios. They use wing
venation patterns, an important classifier, to identify the
bee species (Santoso, Juliandi, and Raffiudin 2018). These
methods involve fine-scale morphological differences, so
they cannot be applied to naturally collected large-scale
data without invasive sampling (Kelley et al. 202 1a; Kumar
et al. 2010). Spiesman et al. (G. Spiesman B. J. 2021) and
Kelly et al. (2021) have tested the effectiveness of CNNs on
species identification using images of bumble bees and Apis
mellifera collected across North America. This study shows
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that computer vision and deep learning can provide reliable
classification based on visual data.

The literature survey shows a significant gap in machine
learning datasets and approaches pertaining to tropical hon-
eybees. Social bees in tropical countries have significantly
higher diversity than in temperate regions (Roubik 2005).
Owing to their distinct evolutionary lineage, tropical bees
have significantly different morphological diversity (Borst
2015; Dar 2019), making existing ML models tested on the
European bee dataset suboptimal for taxonomic purposes.
In addition, passively collected large-scale field images
tend to be noisy due to unreliable lighting, contrast, focus,
motion blur, camera perspectives and the presence of other
non-target species. As most of the prior studies tested the
ML models on images collected in controlled artificial set-
tings (high-resolution images using artificial light), it is
important to test the models on noisy datasets, which can
be collected in the field for rapid and non-invasive diversity
estimation. The addition of noise can further challenge the
existing models, making them more robust in biodiversity
estimation.

Among the tropical countries, South Asian countries
have extremely high human population densities and are
fast developing. These countries face a serious threat to
biodiversity due to anthropogenic pressures, including the
economically relevant bee species. Most of these countries
are also dependent on agriculture for their socio-economic
sustainability. This scenario makes rapid estimation of
bee diversity and population status essential for conser-
vation interventions. Among the South Asian honeybees,
four social native bee species that play an important role
in crop production are A.dorsata, A.cerana, A florea, and
Tetragonula spp. (Meena et al. 2015; Bueno et al. 2023; Cer-
vancia 2018; Nevard 2017). This native honeybee diversity
has been known to exhibit density compensation to sustain
pollination service during unpredictable rainfall conditions
(Mukherjee et al. 2019). This diversity is even more critical
as introduced exotic species like Apis mellifera and bumble
bees do not thrive well in tropical conditions and are addi-
tionally susceptible to diseases like American Foul Brood,
European Foul Brood and Chalk Brood, mites (Varroa spp.
and Tropilaelaps spp.), and bird predation (Cervancia 2018).
Despite their importance, scientific data on these pollinators
is sparse and collected using widely varying invasive and
labour-intensive methods (Cervancia 2018). Hence, in this
study, we tested and benchmarked the existing ML models
on a passively field-collected novel image dataset on major
South Asian honey bees (South Asian Bee Dataset, SABD).
We also compared the results of the existing models with
a custom-written basic CNN model. Our dataset contained
3846 images collected from an agricultural field site in India
under a natural setting using a solar-powered customized
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camera setup. The dataset included all four major South
Asian bee species, viz. A.dorsata, A.cerana, A.florea and
Tetragonula spp.

Materials and methods
Dataset
Data collection

Study Area and Study Species: - The data was collected from
Anekal taluk (an administrative division of sub-district) of
Bangalore Urban district in South India. Geographically, the
region is located at 12.7105° N, 77.6911° E, flanked by the
ever-growing Bangalore city on one side and large stretches
of Bannerghatta National Park on the other. To conduct
pollinator visitation observation in the study area, Chayote
squash Sechium edule, a horticulturally dominant crop, was
selected as the study species (Mukherjee et al. 2019).
Pollinator Visitation Observation: - A solar-powered
automated camera setup was designed to capture the pho-
tograph of the potential pollinators. The set-up consisted of
a DSLR camera (Canon EOS 400D) with a 70-300 Tamron
lens mounted on a camera tripod. The camera setup (sup-
plementary figure s_f 1.1) was attached to a solar-powered
(polycrystalline 18 V 20 W 36-cell solar panel, 56 x46 cm
with aluminium casing) 18 V 5.0Ah battery (Bosch) which
was operated using a custom-designed timer circuit. The
timer circuit had three regulators, one controlling the gap
between consecutive shots (set to 5 s), one controlling cam-
era activity duration at one burst (set to 6 min with 6-min-
ute gap), and one controlling overall active duration (set to
8 h). The circuit was connected to the power supply and to
the camera shutter. At regular intervals, the circuit allowed
power to pass on to the camera, which caused a shutter press
(sensor exposure) and image capture. The images were col-
lected at a continuous burst of six minutes with a gap of
six minutes. During the six-minute photography burst, the
camera captured a photograph every 64 second; hence, it
captured 60 images in total during the six-minute period.
The entire camera setup and the circuit were encased in
a steel box. We conceptualized the camera setup based
on Steen and Aase (2011) but developed it with the help
of ReAP (Renewable Energy Applications and Products,
Malleswaram, Bangalore, India). In our study setup, the
camera focused on a particular group of flowers of Cha-
yote sp. (approximately 25 flowers consisting of both male
and female ones) for the entire day from morning to late
afternoon. The camera setting was kept at ISO-400, aper-
ture f/4.5— /16, exposure 1/60—1/250 s, auto white balance,
clicking JPEG images of 1936 x 1288 pixels in RGB colour

format (24 bit). The raw data comprised 3,846 photographs
collected over two days across two farmlands. For the first
day, the camera was active between 0800 and 1600 h, col-
lecting images across forty 6-minute sessions. On the sec-
ond day, the camera was deployed to a different farmland
(3 km from the first location) and was active between 0800
and 1400 h, collecting images across thirty 6-minute ses-
sions. Both days were completely sunny and without any
cloud cover or rain. These photographs were later processed
and used to train the ML models.

Key features

The major features of our dataset are as follows:

(1) Irregular lightingangle and position:

Due to the above-mentioned data collection method, the
images collected encompass a wide variety of lighting con-
ditions and bee positions. The images range from well-lit to
mere silhouettes of bees. The position and orientation of the
bees also varied greatly, adding further complexity to the
identification and classification task (Fig.1).

(2) Ants and wasps: Ants and other hymenopterans (like
wasps), being morphologically similar and phylogenetically
related to bees, served as a good “noise” in our dataset. Thus
ensuring that the CNN models learnt to distinguish bees
from other insects that visited the flowers targeted by the
camera. Accordingly, these objects were marked separately
using the label “notbee”.

(3) Partially visible and blurry bees: Due to the nature of
data collection, there were numerous images where the bees
are blurred to varying extents. The reason could be any of
the two: motion blur and/or the bee lying outside the cam-
era’s focal plane.

The images also contained partially visible bees, i.e.,
bees whose entire bodies were not visible in the image.
The reason could be any of the two or both: (a) part of the
bee lying outside the camera frame and (b) obstructions
between the camera lens and the bee (like flower petals).
To circumvent these issues, we manually cropped out and
labelled individual bees.

Data processing

Images were annotated by hand using morphological cues
and a visual key (Oldroyd 2006; Shoichi and Sakagami
1978). Makesense.ai (“Make Sense” 2024) was used to
mark bees in the photographs using bounding boxes. We
used six different labels to mark the boxes: bee, notbee,
dorsata, cerana, florea and tetragonula (Fig. 2). The last
four correspond to the species names of our dataset’s four
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Fig. 1 (a) A.dorsata, (b) A.cerana
(¢) A.florea (d) Tetragonula spp.
Examples of sequential images
from our dataset (these images
were cropped from sequential
raw photographs shot 5 s apart).
This shows the dynamic nature of
bee position and orientation

different bee species. Objects that were identified to be not
bees (e.g.:- ants, spiders, wasps, etc.) were marked as “not-
bee”. Objects identified as bees whose species could not
be identified were marked as “bee”. Within each labelled
directory, we created a sub-directory called “notclear”.
The images that could not be classified into a label with-
out using contextual information (such as previous frame/
following frame information, which allowed us to label
an unclear image with its true label) available to us were
deemed as unclear in the context of training data and hence
segregated into a separate directory within each class. An
image was considered unclear when the visual cues present
in the image itself were insufficient to confidently label it
into any of the classes (bee, notbee, dorsata, cerana, florea
and tetragonula).

The annotations were exported, saved and compiled into
a single csv file containing the file name, label, coordinates
of the top left corner of the bounding box, height of the
bounding box, and width. From this csv file, we cropped out
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the area containing the object of interest within the bound-
ing boxes and saved them to a directory with respective
label names. We then used the annotated data containing
3250 images to train the ML models. Based on the data pro-
cessing, four distinct combinatorial datasets were generated
(Table 1): -.

(1) wbnce (with class “bee”, including not clear images):-
Contained all the annotated images.

(2) wboc (with class “bee”, only clear images):- Con-
tained all the annotated images except those within the “not
clear” sub-directory (i.e. wbnc - class (not clear)).

(3) wobnc (without class “bee”, including not clear
images):- Contained all the annotated images except the
class “bee” (i.e. wbnc - class(bee)).

(4) woboc (without class “bee”, only clear images):-
Contained all the images in wobnc except for the images
inside the “not clear” sub-directory (i.e. wbnc - class (bee)
- class (not clear)).
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Fig.2 From (a) to (d) A.dorsata,
A.cerana, A.florea, Tetragonula

spp. (e) object identified as “bee”,

(f) object identified as “notbee”,

which in this case is a wasp. Fig-

ures (g) to (i) show how bound-

ing boxes are drawn around bees

using makesense.ai

Table 1 Class distribution of our dataset

(d)

()

€ (f)

(i)

Class wbnc wboc wobnc woboc Percentage wbnc Percentage wboc Percentage wobnc Percentage woboc
Dorsata 111 98 111 98 3.4% 3.2% 4.1% 3.9%

Cerana 64 58 64 58 2.0% 1.9% 2.4% 2.3%

Florea 821 794 821 794 25.3% 26.2% 30.6% 31.6%
Tetragonula 1135 1051 1135 1051 34.9% 34.7% 42.3% 41.9%

Bee 569 516 0 0 17.5% 17.0% 0.0% 0.0%

Notbee 550 510 550 510 16.9% 16.8% 20.5% 20.3%

TOTAL 3250 3027 2681 2511 100.0% 100.0% 100.0% 100.0%
Models Zisserman 2014) based on their popularity in efficiently

To benchmark our dataset, we used Inception Net-V3 (Sze-
gedy et al. 2016), MobileNet- V2 (Sandler et al. 2018),
ResNet-50 (He et al. 2016), and VGG-16 (Simonyan and

classifying image data. Besides, these models have been
used successfully in other studies for bee species identi-
fication (B. J. et al. Spiesman 2021; Kelley et al. 2021b;
Gharaee et al. 2023b; De Nart et al. 2022). The models were
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Table 2 Comparison of inception Net-V3, MobileNet-V2, ResNet-50,
and VGG16 architectures. PC - Parameter count in millions. D - Depth
in the number of layers

Architecture D PC
Basic CNN 12 273
Inception Net-V3 48  23.8

Main Features

Simple

Factorized convolutions, Efficient
grid size reduction, Asynchronous
batch normalization

Depth-wise separable convolu-
tions, Inverted residuals and linear

MobileNet-V2 53 34

bottlenecks

ResNet-50 50 25.6 Residual learning, Identity short-
cut connections

VGG16 16 138  Deep but simple architecture,

Fixed kernel size (3 x 3) convolu-
tions, Large fully connected layers

Table 3 Model training parameters

Parameter Value
Batch Size 32
Number of Epoch 50
Learning Rate 0.0001
Optimizer Adam

Loss Function Cross Entropy Loss

implemented in Python framework using the torchvision
package. We also ran a basic CNN model for comparison.
The architecture of BasicCNN consists of five 3 x 3 convo-
lutional layers with padding=1, increasing channels from
3—32—64—128—256—512, each followed by ReLU and
2x2 max pooling, then a flattening step into a fully con-
nected layer of 1024 units, and a final output layer matching
the number of classes. The summary of the models is listed
in Table 2.

Model training

We used models pre-trained on the ImageNet dataset (Deng
et al. 2009). We trained the model again on the four varia-
tions of our dataset. This was required to ensure that the
neural networks classify data points to the classes we define
rather than those defined through pre-training. We resized
the images in the datasets to 299 x 299 pixels and used a ran-
domized split to generate training (80%) and testing (20%)
sets. We did not opt for a session or timestamp-based spilt
of the images because any session/timestamp-based split
will be biased as there is a strong correlation between bee
visitation and time of the day. Certain species are more fre-
quent earlier in the day, whereas others are dominant later
in the day. A split based on session or timestamp will bias
the training or testing split with respect to species compo-
sition, lighting scenario, etc. The randomized split ensures
that there are no session specific biases in either the training
or the test sets. We used the same training set images to train
all models, using the same parameters. The parameters used
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Table 4 Model accuracy

Model wbnc wobnc wboc woboc
Inception Net-V3 0.874 0.963 0.878 0.978
MobileNet-V2 0.848 0.978 0.863 0.984
ResNet50 0.848 0.974 0.855 0.982
VGG16 0.772 0.966 0.847 0.956
Basic CNN 0.765 0.927 0.762 0.928

while training are given in Table 3. We ran all the codes on
a Linux server equipped with Intel(R) Xeon(R) Gold 6138
CPU @ 2.00 GHz, 512 GB RAM, and 4 NVIDIA GeForce
RTX 2080 Ti with 11GB VRAM each.

Model testing

The classification reports and confusion matrices of each
model were taken using sklearn.matrics module from the
scikit-learn library.

Results

All established, pre-trained CNNs performed better than our
basic CNN model on all dataset variations (Table 4). How-
ever, Inception Net-V3 had the highest average accuracy
considering its performance across all the datasets (Fig. 3),
and the MobileNet-V2 had the overall highest accuracy in
the woboc dataset (Table 4).

All of the models, without exception, gave better accu-
racies on the woboc and wobnc datasets than on the wbnc
and wboc datasets, i.e., in datasets where the class bee (not
identifiable bee images) was not present (Table 4). There
was a marginal increase in model accuracy when tested on
wboc and woboc datasets compared to wbnc and wobnc
datasets (Table 4). Except for VGG16, all other models
recorded higher accuracy on the woboc dataset variant than
what they recorded on wobnc (Table 4). These results vali-
dated our logical assumption that “not clear” images posed
a significant challenge for the models (refer Fig. 4 for confu-
sion matrix of MobileNet-V2’s performance on woboc vs.
wobnc datasets).

The classes “cerana” and “dorsata” were the two classes
with a relatively low number of data points (Table 1). Of
these, the classification metrics pertaining to the class “cer-
ana” had significant fluctuations across dataset variants and
models (supplementary figure s f 3). Hence, the trends/
values of the F1 score, recall and precision of the class
“cerana” were less reliable. Class “florea” had marginally
better Fl-scores across dataset variants and models than
the class “tetragonula” (supplementary figure s f 3). Class
“dorsata” had a lower F1-score than both “tetragonula” and
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F1-score for Model: Inception Net-V3
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Performance metrics of Inception Net-V3

Fig.3 F1, Recall and Precision scores of all classes across all dataset variants for the overall best model InceptionNet-V3

Fig. 4 Confusion matrices gener-

woboc: MobileNet-V2

wobnc: MobileNet-V2

ated from the performance results

of MobileNet-V2 on two dataset dorsata 0 0
variations, wbnc and wobnc.
The numbers inside the matrix tetragonula{ O 0
represent the number of data
points, and the colour of each cell ¢ wraral 1 0
is based on the normalised value =
of the cell indicated by the colour
scale on the right floreay 0 0
notbee - 1 3

0

dorsata tetragonula cerana

Predicted

“florea” in the datasets where the class “bee” (not identifi-
able bee images) was not present (woboc and wobnc dataset
variants, supplementary figure s_f 3.6).

In the datasets where the class “bee” was present (i.e.
wboc and wbnc dataset variants), “florea” had a higher
precision score than “fetragonula” across all models, sug-
gesting better correct classification. This inequality was
less pronounced in woboc and wobnc dataset variants. Bar-
ring VGG16, the other models showed noticeable trends in

florea

1.0
0 dorsata 0 1 1
0.8 08
2 tetragonula
0.6 0.6
0.)
=]
= cerana
0.4 0.4
florea
0.2
0.2
0 1 0 1
notbee
T ™ T T 0.0
0.0 dorsata tetragonula cerana florea  notbee

notbee

Predicted

precision scores for class “dorsata”, with class “dorsata”
having (a) higher precision score than “ftetragonula” in
dataset variants with class “bee” (wbnc and wboc) (with
the exception of Basic CNN) and (b) lesser precision score
than “fetragonula” in wobnc and woboc dataset variants
(supplementary figure s _f 3.12). This indicated that the
correct classification of class “fetragonula” showed marked
improvement when the class “bee” was removed from the
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dataset, while class “dorsata” was unperturbed by such
changes.

Recall scores for both the classes “florea” and
“tetragonula” were comparably high (>0.75) and showed
relatively less variation across dataset variants and mod-
els. Recall scores of “dorsata” were lesser than that of
“tetragonula” in the wobnc and wbnc dataset variants and
similar to that of “fetragonula” in woboc and wboc dataset
variants (with the exception of Basic CNN) (supplementary
figure s f 3.18).

Discussion

Leveraging image-based machine learning (ML) for bee
identification is essential due to the extensive diversity of
bee species and the limited number of taxonomy experts.
This approach significantly enhances the efficiency of iden-
tification across complex environments and supports the
development of mobile and web-based applications (B. J. et
al. Spiesman 2021). These applications enable a wide range
of users, from novice researchers to conservationists, to
identify bee species using noisy field images. Consequently,
image-based ML algorithms play a crucial role in quantify-
ing bee biodiversity and promoting effective conservation
interventions. This approach is particularly important for
agriculture-dependent developing countries with high bee
diversity (Basu, Bhattacharya, and Iannetta 2011b), which
are experiencing rapid biodiversity loss due to anthropo-
genic pressures (Sodhi et al. 2009).

In this study, we introduce the South Asian Bee Dataset,
which comprises field-collected images of the four primary
social bees key to pollination service. Unlike conventional
datasets curated primarily for taxonomy through ML, our
dataset consists of field-collected images with uncontrolled
conditions, thus challenging the existing ML models to
become more resilient. Along with these challenges, we
tested the model performance against non-targeted species
(ants and wasps) that can occur in the natural environment
while studying pollination service. We found that the model
inception Net-V3 was the most robust model that performed
consistently better than other models across most datasets
with differing complexity levels.

The model performance declined significantly when we
introduced the ambiguous class “bee” (low F1 score and
recall value), where the correct bee species could not be
identified. We found that the models were challenged by the
presence of “not clear” images, signified by a decrease in
model performance in the presence of unclear images in the
dataset.

Despite all the challenges, given a sufficient sample
size, all the models classified the different bee classes with
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considerable accuracy. Interestingly, the models showed
significant accuracy in correctly classifying the non-bee
visitors in our dataset, further highlighting their robustness.
The accuracy across models and dataset variants was high-
est (98.4%) for Mobile Net-V2 without the classes “bee”
and “not clear” (woboc dataset variant).

Conclusion

This dataset and our findings facilitate the training and test-
ing of machine learning models designed explicitly for pol-
lination visitation studies and honeybee biodiversity surveys
in Southeast Asia. This represents an initial step towards
the extensive application of machine learning in bee spe-
cies classification and pollination studies using passively
recorded data. These models, which exhibit robustness in
handling noisy natural images, can be employed to classify
and estimate not only bee diversity but also bee population
status across vast and intricate landscapes without human
intervention. This capability enables rapid assessment of
bee biodiversity and facilitates swift conservation actions
when necessary.

One of the limitations of the current study is the lim-
ited spatiotemporal sampling across two days and only two
farmlands in one specific geographic location. To further
enhance the robustness of such applications, more extensive
sampling across multiple locations and longer timeframes is
required to build a comprehensive database. It is also crucial
to collect essential metadata, including timestamps and geo-
graphic locations of the photographs. Unlike traditional data-
sets, our dataset captures relevant ecological and contextual
information such as temporal patterns and geographic data.
These features allow for the analysis of temporal patterns
in pollination visitation. Future directions for this research
include further sampling, including algorithms for object
detection from raw field images, tracking individual bees
across images or video data, training machine learning mod-
els to quantify pollen load, a proxy for pollination potential
of bees. This structured approach will ensure the dataset’s
applicability in broader ecological studies and conservation
efforts, thereby significantly advancing the field of pollina-
tion research and bee biodiversity conservation.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s10841-0
25-00691-7.
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