
ORIGINAL PAPER

Journal of Insect Conservation (2025) 29:55
https://doi.org/10.1007/s10841-025-00691-7

Introduction

Biodiversity, the variety of life forms within an ecosystem, 
is crucial in ecosystem functioning and resilience (Loreau et 
al. 2001). A healthy ecosystem provides free essential ser-
vices, such as provisioning and regulating, which signifi-
cantly impact a country’s socio-economy (Costanza et al. 
1998). Insect-mediated pollination, perhaps the most eco-
nomically important service, valued at €153 billion (Gallai 
et al. 2009), contributes to 35% of the world’s food produc-
tion. Pollinators play a critical role in maintaining healthy 
genetic diversity in plants and also affect plant yield, includ-
ing crop plants (Kasina et al. 2009; van der Sluijs et al. 
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Abstract
Healthy ecosystems provide indispensable services like pollination, climate regulation, and soil formation. Pollination 
service provided by insects alone is valued at €153  billion. Bees are one of the major insect pollinators, making them 
economically important animals, yet their populations are threatened by anthropogenic pressures. Monitoring the distribu-
tion and diversity of wild bees becomes daunting as it involves extensive field surveys, sample collection, and traditional 
taxonomy. Logistic and ethical issues complicate this further. Machine learning (ML) on passively collected visual data 
can provide a non-invasive, large-scale solution to these problems. However, a significant challenge for ML application is 
the lack of geographically varying training data for different bee species, especially from species-rich tropical regions. In 
addition, these algorithms have predominantly been tested on image data collected under controlled conditions inside labo-
ratories. ML models must be trained to perform on field-collected unrefined images of different bee species for rapid yet 
non-invasive diversity estimation. In this study, to challenge and bolster the existing deep learning networks, we collected 
3250 field-captured images of major South Asian social bees (A. dorsata, A. cerana, A. florea, and Tetragonula spp.). We 
did not control these images for lighting and camera perspectives, which posed significant challenges to the models. We 
benchmarked this image dataset using standard convolution neural network (CNN) models, finding that MobileNet-V2 
was the best model, achieving the highest accuracy of 98.4%.

Clinical trial number
Clinical trial number not applicable.

Implications for insect conservation
Our study provides a framework to rapidly quantify the economically important bee diversity, which will allow efficient 
conservation intervention across large spatial scales.
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2016). Bees, one of the most significant pollinators in the 
animal kingdom, are essential for sustaining ecological and 
economic stability (Indhu et al. 2022; Khalifa et al. 2021). 
In recent years, there has been a general decline in the num-
bers and diversity of both wild and domesticated pollina-
tors worldwide (Potts et al. 2010). Ollerton (2015) indicated 
that globally, there had been a considerable drop in pollina-
tor abundance and diversity in almost all geographic areas. 
Basu et al. (Basu, Bhattacharya, and Iannetta 2011a) sug-
gested that declining pollinator-dependent crop productivity 
in India can be associated with pollination limitation, which 
can significantly impact the socio-economy of an agricultur-
ally dependent country like India. Monitoring, maintaining 
and studying honey bee diversity and distribution is impera-
tive to ensure food security and ecological balance (Indhu 
et al. 2022). Identifying and cataloguing species diversity is 
a laborious task. It requires time and trained research per-
sonnel/taxonomists, which comes with practical and logistic 
constraints (Colwell 2009). Passive recording methods like 
camera setups have multi-fold advantages over traditional 
field surveys. Firstly, passive information collection allows 
us to generate significant amounts of large-scale spatial 
and temporal data with minimal effort. Secondly, it can be 
deployed in areas where human intervention is undesirable, 
difficult or impossible. Further, it reduces human error and 
bias while performing traditional field work and taxonomy. 
Such passive monitoring methods have been demonstrated 
to be effective in other insects like agricultural pests and 
moths. (Jain et al. 2024; Kariyanna and Sowjanya 2024; 
Mendoza et al. 2023)

Advancements in ML, primarily deep learning and con-
volution neural networks (CNN) have caused a paradigm 
shift in fields such as traditional taxonomy and species iden-
tification (Gharaee et al. 2023a; Høye et al. 2021; Ruttner 
1988; Sauer et al. 2024). One such important application 
of ML is in bee species and sub-species identification from 
visual data (C. De Nart D. 2022; M et al. 2021; Spiesman 
BJ 2024; Buschbacher et al. 2020; Nawrocka et al. 2017), 
where clean images under the microscope have been used 
for the identification of European bees. These studies focus 
on datasets curated under laboratory conditions, consisting 
of wing images of European bees photographed under a 
microscope in controlled lighting scenarios. They use wing 
venation patterns, an important classifier, to identify the 
bee species (Santoso, Juliandi, and Raffiudin 2018). These 
methods involve fine-scale morphological differences, so 
they cannot be applied to naturally collected large-scale 
data without invasive sampling (Kelley et al. 2021a; Kumar 
et al. 2010). Spiesman et al. (G. Spiesman B. J. 2021) and 
Kelly et al. (2021) have tested the effectiveness of CNNs on 
species identification using images of bumble bees and Apis 
mellifera collected across North America. This study shows 

that computer vision and deep learning can provide reliable 
classification based on visual data.

The literature survey shows a significant gap in machine 
learning datasets and approaches pertaining to tropical hon-
eybees. Social bees in tropical countries have significantly 
higher diversity than in temperate regions (Roubik 2005). 
Owing to their distinct evolutionary lineage, tropical bees 
have significantly different morphological diversity (Borst 
2015; Dar 2019), making existing ML models tested on the 
European bee dataset suboptimal for taxonomic purposes. 
In addition, passively collected large-scale field images 
tend to be noisy due to unreliable lighting, contrast, focus, 
motion blur, camera perspectives and the presence of other 
non-target species. As most of the prior studies tested the 
ML models on images collected in controlled artificial set-
tings (high-resolution images using artificial light), it is 
important to test the models on noisy datasets, which can 
be collected in the field for rapid and non-invasive diversity 
estimation. The addition of noise can further challenge the 
existing models, making them more robust in biodiversity 
estimation.

Among the tropical countries, South Asian countries 
have extremely high human population densities and are 
fast developing. These countries face a serious threat to 
biodiversity due to anthropogenic pressures, including the 
economically relevant bee species. Most of these countries 
are also dependent on agriculture for their socio-economic 
sustainability. This scenario makes rapid estimation of 
bee diversity and population status essential for conser-
vation interventions. Among the South Asian honeybees, 
four social native bee species that play an important role 
in crop production are A.dorsata, A.cerana, A.florea, and 
Tetragonula spp. (Meena et al. 2015; Bueno et al. 2023; Cer-
vancia 2018; Nevard 2017). This native honeybee diversity 
has been known to exhibit density compensation to sustain 
pollination service during unpredictable rainfall conditions 
(Mukherjee et al. 2019). This diversity is even more critical 
as introduced exotic species like Apis mellifera and bumble 
bees do not thrive well in tropical conditions and are addi-
tionally susceptible to diseases like American Foul Brood, 
European Foul Brood and Chalk Brood, mites (Varroa spp. 
and Tropilaelaps spp.), and bird predation (Cervancia 2018). 
Despite their importance, scientific data on these pollinators 
is sparse and collected using widely varying invasive and 
labour-intensive methods (Cervancia 2018). Hence, in this 
study, we tested and benchmarked the existing ML models 
on a passively field-collected novel image dataset on major 
South Asian honey bees (South Asian Bee Dataset, SABD). 
We also compared the results of the existing models with 
a custom-written basic CNN model. Our dataset contained 
3846 images collected from an agricultural field site in India 
under a natural setting using a solar-powered customized 
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camera setup. The dataset included all four major South 
Asian bee species, viz. A.dorsata, A.cerana, A.florea and 
Tetragonula spp.

Materials and methods

Dataset

Data collection

Study Area and Study Species: - The data was collected from 
Anekal taluk (an administrative division of sub-district) of 
Bangalore Urban district in South India. Geographically, the 
region is located at 12.7105° N, 77.6911° E, flanked by the 
ever-growing Bangalore city on one side and large stretches 
of Bannerghatta National Park on the other. To conduct 
pollinator visitation observation in the study area, Chayote 
squash Sechium edule, a horticulturally dominant crop, was 
selected as the study species (Mukherjee et al. 2019).

Pollinator Visitation Observation: - A solar-powered 
automated camera setup was designed to capture the pho-
tograph of the potential pollinators. The set-up consisted of 
a DSLR camera (Canon EOS 400D) with a 70–300 Tamron 
lens mounted on a camera tripod. The camera setup (sup-
plementary figure s_f_1.1) was attached to a solar-powered 
(polycrystalline 18 V 20 W 36-cell solar panel, 56 × 46 cm 
with aluminium casing) 18 V 5.0Ah battery (Bosch) which 
was operated using a custom-designed timer circuit. The 
timer circuit had three regulators, one controlling the gap 
between consecutive shots (set to 5 s), one controlling cam-
era activity duration at one burst (set to 6 min with 6-min-
ute gap), and one controlling overall active duration (set to 
8 h). The circuit was connected to the power supply and to 
the camera shutter. At regular intervals, the circuit allowed 
power to pass on to the camera, which caused a shutter press 
(sensor exposure) and image capture. The images were col-
lected at a continuous burst of six minutes with a gap of 
six minutes. During the six-minute photography burst, the 
camera captured a photograph every 6𝑡ℎ second; hence, it 
captured 60 images in total during the six-minute period. 
The entire camera setup and the circuit were encased in 
a steel box. We conceptualized the camera setup based 
on Steen and Aase (2011) but developed it with the help 
of ReAP (Renewable Energy Applications and Products, 
Malleswaram, Bangalore, India). In our study setup, the 
camera focused on a particular group of flowers of Cha-
yote sp. (approximately 25 flowers consisting of both male 
and female ones) for the entire day from morning to late 
afternoon. The camera setting was kept at ISO-400, aper-
ture f/4.5– f/16, exposure 1/60–1/250 s, auto white balance, 
clicking JPEG images of 1936 × 1288 pixels in RGB colour 

format (24 bit). The raw data comprised 3,846 photographs 
collected over two days across two farmlands. For the first 
day, the camera was active between 0800 and 1600 h, col-
lecting images across forty 6-minute sessions. On the sec-
ond day, the camera was deployed to a different farmland 
(3 km from the first location) and was active between 0800 
and 1400  h, collecting images across thirty 6-minute ses-
sions. Both days were completely sunny and without any 
cloud cover or rain. These photographs were later processed 
and used to train the ML models.

Key features

The major features of our dataset are as follows:
(1) Irregular lightingangle and position:
Due to the above-mentioned data collection method, the 

images collected encompass a wide variety of lighting con-
ditions and bee positions. The images range from well-lit to 
mere silhouettes of bees. The position and orientation of the 
bees also varied greatly, adding further complexity to the 
identification and classification task (Fig.1).

(2) Ants and wasps: Ants and other hymenopterans (like 
wasps), being morphologically similar and phylogenetically 
related to bees, served as a good “noise” in our dataset. Thus 
ensuring that the CNN models learnt to distinguish bees 
from other insects that visited the flowers targeted by the 
camera. Accordingly, these objects were marked separately 
using the label “notbee”.

(3) Partially visible and blurry bees: Due to the nature of 
data collection, there were numerous images where the bees 
are blurred to varying extents. The reason could be any of 
the two: motion blur and/or the bee lying outside the cam-
era’s focal plane.

The images also contained partially visible bees, i.e., 
bees whose entire bodies were not visible in the image. 
The reason could be any of the two or both: (a) part of the 
bee lying outside the camera frame and (b) obstructions 
between the camera lens and the bee (like flower petals). 
To circumvent these issues, we manually cropped out and 
labelled individual bees.

Data processing

Images were annotated by hand using morphological cues 
and a visual key (Oldroyd 2006; Shoichi and Sakagami 
1978). Makesense.ai (“Make Sense” 2024) was used to 
mark bees in the photographs using bounding boxes. We 
used six different labels to mark the boxes: bee, notbee, 
dorsata, cerana, florea and tetragonula (Fig. 2). The last 
four correspond to the species names of our dataset’s four 
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the area containing the object of interest within the bound-
ing boxes and saved them to a directory with respective 
label names. We then used the annotated data containing 
3250 images to train the ML models. Based on the data pro-
cessing, four distinct combinatorial datasets were generated 
(Table 1): -.

(1) wbnc (with class “bee”, including not clear images):- 
Contained all the annotated images.

(2) wboc (with class “bee”, only clear images):- Con-
tained all the annotated images except those within the “not 
clear” sub-directory (i.e. wbnc - class (not clear)).

(3) wobnc (without class “bee”, including not clear 
images):- Contained all the annotated images except the 
class “bee” (i.e. wbnc - class(bee)).

(4) woboc (without class “bee”, only clear images):- 
Contained all the images in wobnc except for the images 
inside the “not clear” sub-directory (i.e. wbnc - class (bee) 
- class (not clear)).

different bee species. Objects that were identified to be not 
bees (e.g.:- ants, spiders, wasps, etc.) were marked as “not-
bee”. Objects identified as bees whose species could not 
be identified were marked as “bee”. Within each labelled 
directory, we created a sub-directory called “notclear”. 
The images that could not be classified into a label with-
out using contextual information (such as previous frame/
following frame information, which allowed us to label 
an unclear image with its true label) available to us were 
deemed as unclear in the context of training data and hence 
segregated into a separate directory within each class. An 
image was considered unclear when the visual cues present 
in the image itself were insufficient to confidently label it 
into any of the classes (bee, notbee, dorsata, cerana, florea 
and tetragonula).

The annotations were exported, saved and compiled into 
a single csv file containing the file name, label, coordinates 
of the top left corner of the bounding box, height of the 
bounding box, and width. From this csv file, we cropped out 

Fig. 1  (a) A.dorsata, (b) A.cerana 
(c) A.florea (d) Tetragonula spp. 
Examples of sequential images 
from our dataset (these images 
were cropped from sequential 
raw photographs shot 5 s apart). 
This shows the dynamic nature of 
bee position and orientation
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Zisserman 2014) based on their popularity in efficiently 
classifying image data. Besides, these models have been 
used successfully in other studies for bee species identi-
fication (B. J. et al. Spiesman 2021; Kelley et al. 2021b; 
Gharaee et al. 2023b; De Nart et al. 2022). The models were 

Models

To benchmark our dataset, we used Inception Net-V3 (Sze-
gedy et al. 2016), MobileNet- V2 (Sandler et al. 2018), 
ResNet-50 (He et al. 2016), and VGG-16 (Simonyan and 

Table 1  Class distribution of our dataset
Class wbnc wboc wobnc woboc Percentage wbnc Percentage wboc Percentage wobnc Percentage woboc
Dorsata 111 98 111 98 3.4% 3.2% 4.1% 3.9%
Cerana 64 58 64 58 2.0% 1.9% 2.4% 2.3%
Florea 821 794 821 794 25.3% 26.2% 30.6% 31.6%
Tetragonula 1135 1051 1135 1051 34.9% 34.7% 42.3% 41.9%
Bee 569 516 0 0 17.5% 17.0% 0.0% 0.0%
Notbee 550 510 550 510 16.9% 16.8% 20.5% 20.3%
TOTAL 3250 3027 2681 2511 100.0% 100.0% 100.0% 100.0%

Fig. 2  From (a) to (d) A.dorsata, 
A.cerana, A.florea, Tetragonula 
spp. (e) object identified as “bee”, 
(f) object identified as “notbee”, 
which in this case is a wasp. Fig-
ures (g) to (i) show how bound-
ing boxes are drawn around bees 
using makesense.ai
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while training are given in Table 3. We ran all the codes on 
a Linux server equipped with Intel(R) Xeon(R) Gold 6138 
CPU @ 2.00 GHz, 512 GB RAM, and 4 NVIDIA GeForce 
RTX 2080 Ti with 11GB VRAM each.

Model testing

The classification reports and confusion matrices of each 
model were taken using sklearn.matrics module from the 
scikit-learn library.

Results

All established, pre-trained CNNs performed better than our 
basic CNN model on all dataset variations (Table 4). How-
ever, Inception Net-V3 had the highest average accuracy 
considering its performance across all the datasets (Fig. 3), 
and the MobileNet-V2 had the overall highest accuracy in 
the woboc dataset (Table 4).

All of the models, without exception, gave better accu-
racies on the woboc and wobnc datasets than on the wbnc 
and wboc datasets, i.e., in datasets where the class bee (not 
identifiable bee images) was not present (Table  4). There 
was a marginal increase in model accuracy when tested on 
wboc and woboc datasets compared to wbnc and wobnc 
datasets (Table  4). Except for VGG16, all other models 
recorded higher accuracy on the woboc dataset variant than 
what they recorded on wobnc (Table 4). These results vali-
dated our logical assumption that “not clear” images posed 
a significant challenge for the models (refer Fig. 4 for confu-
sion matrix of MobileNet-V2’s performance on woboc vs. 
wobnc datasets).

The classes “cerana” and “dorsata” were the two classes 
with a relatively low number of data points (Table 1). Of 
these, the classification metrics pertaining to the class “cer-
ana” had significant fluctuations across dataset variants and 
models (supplementary figure s_f_3). Hence, the trends/
values of the F1 score, recall and precision of the class 
“cerana” were less reliable. Class “florea” had marginally 
better F1-scores across dataset variants and models than 
the class “tetragonula” (supplementary figure s_f_3). Class 
“dorsata” had a lower F1-score than both “tetragonula” and 

implemented in Python framework using the torchvision 
package. We also ran a basic CNN model for comparison. 
The architecture of BasicCNN consists of five 3 × 3 convo-
lutional layers with padding = 1, increasing channels from 
3→32→64→128→256→512, each followed by ReLU and 
2 × 2 max pooling, then a flattening step into a fully con-
nected layer of 1024 units, and a final output layer matching 
the number of classes. The summary of the models is listed 
in Table 2.

Model training

We used models pre-trained on the ImageNet dataset (Deng 
et al. 2009). We trained the model again on the four varia-
tions of our dataset. This was required to ensure that the 
neural networks classify data points to the classes we define 
rather than those defined through pre-training. We resized 
the images in the datasets to 299 × 299 pixels and used a ran-
domized split to generate training (80%) and testing (20%) 
sets. We did not opt for a session or timestamp-based spilt 
of the images because any session/timestamp-based split 
will be biased as there is a strong correlation between bee 
visitation and time of the day. Certain species are more fre-
quent earlier in the day, whereas others are dominant later 
in the day. A split based on session or timestamp will bias 
the training or testing split with respect to species compo-
sition, lighting scenario, etc. The randomized split ensures 
that there are no session specific biases in either the training 
or the test sets. We used the same training set images to train 
all models, using the same parameters. The parameters used 

Table 2  Comparison of inception Net-V3, MobileNet-V2, ResNet-50, 
and VGG16 architectures. PC - Parameter count in millions. D - Depth 
in the number of layers
Architecture D PC Main Features
Basic CNN 12 27.3 Simple
Inception Net-V3 48 23.8 Factorized convolutions, Efficient 

grid size reduction, Asynchronous 
batch normalization

MobileNet-V2 53 3.4 Depth-wise separable convolu-
tions, Inverted residuals and linear 
bottlenecks

ResNet-50 50 25.6 Residual learning, Identity short-
cut connections

VGG16 16 138 Deep but simple architecture, 
Fixed kernel size (3 × 3) convolu-
tions, Large fully connected layers

Table 3  Model training parameters
Parameter Value
Batch Size 32
Number of Epoch 50
Learning Rate 0.0001
Optimizer Adam
Loss Function Cross Entropy Loss

Table 4  Model accuracy
Model wbnc wobnc wboc woboc
Inception Net-V3 0.874 0.963 0.878 0.978
MobileNet-V2 0.848 0.978 0.863 0.984
ResNet50 0.848 0.974 0.855 0.982
VGG16 0.772 0.966 0.847 0.956
Basic CNN 0.765 0.927 0.762 0.928
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precision scores for class “dorsata”, with class “dorsata” 
having (a) higher precision score than “tetragonula” in 
dataset variants with class “bee” (wbnc and wboc) (with 
the exception of Basic CNN) and (b) lesser precision score 
than “tetragonula” in wobnc and woboc dataset variants 
(supplementary figure s_f_3.12). This indicated that the 
correct classification of class “tetragonula” showed marked 
improvement when the class “bee” was removed from the 

“florea” in the datasets where the class “bee” (not identifi-
able bee images) was not present (woboc and wobnc dataset 
variants, supplementary figure s_f_3.6).

In the datasets where the class “bee” was present (i.e. 
wboc and wbnc dataset variants), “florea” had a higher 
precision score than “tetragonula” across all models, sug-
gesting better correct classification. This inequality was 
less pronounced in woboc and wobnc dataset variants. Bar-
ring VGG16, the other models showed noticeable trends in 

Fig. 4  Confusion matrices gener-
ated from the performance results 
of MobileNet-V2 on two dataset 
variations, wbnc and wobnc. 
The numbers inside the matrix 
represent the number of data 
points, and the colour of each cell 
is based on the normalised value 
of the cell indicated by the colour 
scale on the right

 

Fig. 3  F1, Recall and Precision scores of all classes across all dataset variants for the overall best model InceptionNet-V3
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considerable accuracy. Interestingly, the models showed 
significant accuracy in correctly classifying the non-bee 
visitors in our dataset, further highlighting their robustness. 
The accuracy across models and dataset variants was high-
est (98.4%) for Mobile Net-V2 without the classes “bee” 
and “not clear” (woboc dataset variant).

Conclusion

This dataset and our findings facilitate the training and test-
ing of machine learning models designed explicitly for pol-
lination visitation studies and honeybee biodiversity surveys 
in Southeast Asia. This represents an initial step towards 
the extensive application of machine learning in bee spe-
cies classification and pollination studies using passively 
recorded data. These models, which exhibit robustness in 
handling noisy natural images, can be employed to classify 
and estimate not only bee diversity but also bee population 
status across vast and intricate landscapes without human 
intervention. This capability enables rapid assessment of 
bee biodiversity and facilitates swift conservation actions 
when necessary.

One of the limitations of the current study is the lim-
ited spatiotemporal sampling across two days and only two 
farmlands in one specific geographic location. To further 
enhance the robustness of such applications, more extensive 
sampling across multiple locations and longer timeframes is 
required to build a comprehensive database. It is also crucial 
to collect essential metadata, including timestamps and geo-
graphic locations of the photographs. Unlike traditional data-
sets, our dataset captures relevant ecological and contextual 
information such as temporal patterns and geographic data. 
These features allow for the analysis of temporal patterns 
in pollination visitation. Future directions for this research 
include further sampling, including algorithms for object 
detection from raw field images, tracking individual bees 
across images or video data, training machine learning mod-
els to quantify pollen load, a proxy for pollination potential 
of bees. This structured approach will ensure the dataset’s 
applicability in broader ecological studies and conservation 
efforts, thereby significantly advancing the field of pollina-
tion research and bee biodiversity conservation.

Supplementary Information  The online version contains 
supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​1​​0​8​4​1​-​0​
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dataset, while class “dorsata” was unperturbed by such 
changes.

Recall scores for both the classes “florea” and 
“tetragonula” were comparably high (> 0.75) and showed 
relatively less variation across dataset variants and mod-
els. Recall scores of “dorsata” were lesser than that of 
“tetragonula” in the wobnc and wbnc dataset variants and 
similar to that of “tetragonula” in woboc and wboc dataset 
variants (with the exception of Basic CNN) (supplementary 
figure s_f_3.18).

Discussion

Leveraging image-based machine learning (ML) for bee 
identification is essential due to the extensive diversity of 
bee species and the limited number of taxonomy experts. 
This approach significantly enhances the efficiency of iden-
tification across complex environments and supports the 
development of mobile and web-based applications (B. J. et 
al. Spiesman 2021). These applications enable a wide range 
of users, from novice researchers to conservationists, to 
identify bee species using noisy field images. Consequently, 
image-based ML algorithms play a crucial role in quantify-
ing bee biodiversity and promoting effective conservation 
interventions. This approach is particularly important for 
agriculture-dependent developing countries with high bee 
diversity (Basu, Bhattacharya, and Iannetta 2011b), which 
are experiencing rapid biodiversity loss due to anthropo-
genic pressures (Sodhi et al. 2009).

In this study, we introduce the South Asian Bee Dataset, 
which comprises field-collected images of the four primary 
social bees key to pollination service. Unlike conventional 
datasets curated primarily for taxonomy through ML, our 
dataset consists of field-collected images with uncontrolled 
conditions, thus challenging the existing ML models to 
become more resilient. Along with these challenges, we 
tested the model performance against non-targeted species 
(ants and wasps) that can occur in the natural environment 
while studying pollination service. We found that the model 
inception Net-V3 was the most robust model that performed 
consistently better than other models across most datasets 
with differing complexity levels.

The model performance declined significantly when we 
introduced the ambiguous class “bee” (low F1 score and 
recall value), where the correct bee species could not be 
identified. We found that the models were challenged by the 
presence of “not clear” images, signified by a decrease in 
model performance in the presence of unclear images in the 
dataset.

Despite all the challenges, given a sufficient sample 
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